Приложение к ООП ООО МБОУ «Лесогорская СОШ» утверждена приказом МБОУ «Лесогорская СОШ» от 31.08.2021 г. №105-ОД Муниципальное образование «Выборгский район» Ленинградской области Муниципальное бюджетное общеобразовательное учреждение «Лесогорская средняя общеобразовательная школа» (МБОУ «Лесогорская СОШ») Рабочая программа Внеурочной деятельности общеинтеллектуального направления по курсу «Избранные вопросы математики» для 9 класса Уровень основного общего образования Срок реализации: 1 год Разработана Педагогом дополнительного образования Редькиной М.О. п. Лесогорский 2021 г. I. Содержание учебного курса: 1.Числа, числовые выражения, проценты Натуральные числа. Арифметические действия с натуральными числами. Свойства арифметических действий. Делимость натуральных чисел. Делители и кратные числа. Признаки делимости на 2, 3, 5, 9, 10. Деление с остатком. Простые числа. Разложение натурального числа на простые множители. Нахождение НОК, НОД. Обыкновенные дроби, действия с обыкновенными дробями. Десятичные дроби, действия с десятичными дробями. Применение свойств для упрощения выражений. Тождественно равные выражения. Проценты. Нахождение процентов от числа и числа по проценту. 2. Буквенные выражения Выражения с переменными. Тождественные преобразования выражений с переменными. Значение выражений при известных числовых данных переменных. 3. Преобразование выражений. Формулы сокращенного умножения. Рациональные дроби. Одночлены и многочлены. Стандартный вид одночлена, многочлена. Коэффициент одночлена. Степень одночлена, многочлена. Действия с одночленами и многочленами. Разложение многочлена на множители. Формулы сокращенного умножения. Способы разложения многочлена на множители. Рациональные дроби и их свойства. Допустимые значения переменных. Тождество, тождественные преобразования рациональных дробей. Степень с целым показателем и их свойства. Корень n-ой степени, степень с рациональным показателем и их свойства. 4.Уравнения и неравенства. Линейные уравнения с одной переменной. Корень уравнения. Равносильные уравнения. Системы линейных уравнений. Методы решения систем уравнений: подстановки, метод сложения, графический метод. Квадратные уравнения. Неполное квадратное уравнение. Теорема Виета о корнях уравнения. Неравенства с одной переменной. Система неравенств. Методы решения неравенств и систем неравенств: метод интервалов, графический метод. 5. Прогрессии: арифметическая и геометрическая числовые последовательности. Разность арифметической прогрессии. Формула n-ого члена арифметической прогрессии. Формула суммы n членов арифметической прогрессии. Геометрическая прогрессия. Знаменатель геометрической прогрессии. Формула n-ого члена геометрической прогрессии. Формула суммы n членов геометрической прогрессии. Сумма бесконечной геометрической прогрессии. 6.Функции и графики. Понятие функции. Функция и аргумент. Область определения функции. Область значений функции. График функции. Нули функции. Функция, возрастающая на отрезке. Функция, убывающая на отрезке. Линейная функция и ее свойства. График линейной функции. Угловой коэффициент функции. Обратно пропорциональная функция и ее свойства. Квадратичная функция и ее свойства. График квадратичной функции. Степенная функция. Четная, нечетная функция. Свойства четной и нечетной степенных функций. Графики степенных функций. Чтение графиков функций. 7. Текстовые задачи. Текстовые задачи на движение и способы решения. Текстовые задачи на вычисление объема работы и способы их решений. Текстовые задачи на процентное содержание веществ в сплавах, смесях и растворах, способы решения . 8. Элементы статистики и теории вероятностей. Среднее арифметическое, размах, мода. Медиана, как статистическая характеристика. Сбор и группировка статистических данных. Методы решения комбинаторных задач: перебор возможных вариантов, дерево вариантов, правило 7умножения. Перестановки, размещения, сочетания. Начальные сведения из теории вероятностей. Вероятность случайного события. Сложение и умножение вероятностей. 9. Треугольники. Высота, медиана, средняя линия треугольника. Равнобедренный и равносторонний треугольники. Признаки равенства и подобия треугольников. Решение треугольников. Сумма углов треугольника. Свойства прямоугольных треугольников. Теорема Пифагора. Теорема синусов и косинусов. Неравенство треугольников. Площадь треугольника. 10. Многоугольники. Виды многоугольников. Параллелограмм, его свойства и признаки. Площадь параллелограмма. Ромб, прямоугольник, квадрат. Трапеция. Средняя линия трапеции. Площадь трапеции. Правильные многоугольники. 11. Окружность. Касательная к окружности и ее свойства. Центральный и вписанный углы. Окружность, описанная около треугольника. Окружность, вписанная в треугольник. Длина окружности. Площадь круга. 12. Решение тренировочных вариантов и заданий из открытого банка заданий ГИА9 II. Планируемые результаты: Изучение алгебры в основной школе дает возможность обучающимся достичь следующих результатов развития: в личностном направлении: 1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; 2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; 3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации; 4) креативность мышления, инициатива, находчивость, активность при решении математических задач; 5) умение контролировать процесс и результат учебной математической деятельности; 6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений; в метапредметном направлении: 1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов; 2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; 3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; 4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации; 5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; 6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; 7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; 8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; 9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; в предметном направлении: 1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления; 2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений; 3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений; 4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса; 5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей; 6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях; 7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений; 8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач; 9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур; 10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера. учащийся должен знать/понимать: • существо понятия алгоритма; примеры алгоритмов; • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач; • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания; • как потребности практики привели математическую науку к необходимости расширения понятия числа; • значение математики как науки; • значение математики в повседневной жизни, а также как прикладного инструмента в будущей профессиональной деятельности уметь: • решать задания, по типу приближенных к заданиям государственной итоговой аттестации (базовую часть), иметь опыт (в терминах компетентностей): • работы в группе, как на занятиях, так и вне, • работы с информацией, в том числе и получаемой посредством Интернет Арифметика уметь • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем; • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки; • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений; • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений; • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот; • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера; • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов; • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений. Алгебра уметь • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные; • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений; • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни; • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы; • решать линейные и квадратные неравенства с одной переменной и их системы, • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи; • изображать числа точками на координатной прямой; • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства; • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов; • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей; • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств; • описывать свойства изученных функций, строить их графики. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах; • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры; • описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций; • интерпретации графиков реальных зависимостей между величинами. Элементы логики, комбинаторики, статистики и теории вероятностей уметь • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений; • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики; • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения; • вычислять средние значения результатов измерений; • находить частоту события, используя собственные наблюдения и готовые статистические данные; • находить вероятности случайных событий в простейших случаях. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: • выстраивания аргументации при доказательстве и в диалоге; • распознавания логически некорректных рассуждений; • записи математических утверждений, доказательств; • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц; • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости; • решения учебных и практических задач, требующих систематического перебора вариантов; • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией; • понимания статистических утверждений. Геометрия уметь: пользоваться геометрическим языком для описания предметов окружающего распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры; выполнять чертежи по условию задач; мира; осуществлять преобразование фигур; вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них; решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии; проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи в пространстве. III. Тематическое планирование № НАИМЕНОВАНИЕ РАЗДЕЛОВ И ТЕМ 1. Введение. Знакомство со структурой. Кол-во часов 1 Действия с рациональными числами. Стандартный вид числа. 2. Действительные числа. Квадратный корень. Иррациональные 1 числа. Треугольник. Признаки равенства треугольников. 3. Прямоугольные треугольники. Соотношения в прямоугольном 1 треугольнике. 4. 5. 6. 7. Единицы измерения длины, площади, объема, массы, времени, скорости. Зависимость между величинами. Пропорции. Разложение многочлена на множители. Формулы сокращенного умножения. Тождество. Преобразование тождеств. Параллелограмм, свойства и признаки. Прямоугольник. Ромб. Квадрат. Алгебраическая дробь. Действия с алгебраическими дробями. Преобразования алгебраических выражений. 2 2 1 1 8. Многоугольники. Сумма углов. Периметр. 1 9. Трапеция. Площадь трапеции. 1 10. Свойства степени с целым показателем. 1 11. Признаки подобия треугольников. 1 12. Линейные и квадратные уравнения. 1 13. Окружность вписанная и описанная. Отрезки, связанные с окружностью. Углы, связанные с окружностью. 1 14. Системы уравнений. 1 15. Площадь треугольника, четырехугольника. 1 16. Решение текстовых задач с помощью уравнений. 1 18. Статистические характеристики. Диаграммы. 1 20. 21. Решение прямоугольных треугольников. Решение треугольников. Теорема синусов. Теорема косинусов. Неравенства. Линейные и квадратные. Системы неравенств. Метод интервалов. 1 1 22. Площадь круга, сектора. Длина окружности, дуги. 1 27. Комбинаторика. Вероятность. Вероятностные задачи. 1 28. Арифметическая прогрессия. Геометрическая прогрессия. 1 29. Выражения и их преобразования. 1 30. Треугольник и окружность. Четырехугольник и окружность. 1 31. Уравнения. Неравенства. 1 32. Функции и графики. 1 33. Работа с бланками. 1 34. Решение тестовых заданий. Индивидуальная работа. 1